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Abstract

A simple topological model in an earlier manuscript has provided additional support for the concept that efficient atomic packing

is a fundamental principle in the formation of metallic glasses. In that work, an approach for defining and quantifying the local

packing efficiency, P, was developed for solute-centered clusters that contained only solvent atoms in the first coordination shell.

In the present work, this methodology is extended to allow quantification of P when more than one atomic species is present in

the first coordination shell. This analysis is applied to several metallic glasses using published experimental data of partial coordi-

nation numbers. It is shown that packing in the first coordination shell is generally very efficient, even though the systems studied

have significant differences in atomic species, compositions and relative atomic sizes. It is shown that packing is generally efficient

around both solute and solvent atom species. Local packing efficiencies much less than unity are expected to be uncommon, since the

global average packing efficiency is near unity and local packing efficiencies greater than unity are physically improbable. Deviations

from efficiently packed configurations are discussed with respect to the local packing efficiencies in competing crystalline structures

and with poorer glass forming ability. The values of P obtained for metallic glasses are essentially identical to the values obtained

from a similar analysis of the competing crystalline structures. These results are consistent with frequent earlier reports of topolo-

gical short range ordering in metallic glasses and with developments that have established the relationship between dense atomic

packing and glass formation.

� 2004 Elsevier B.V. All rights reserved.

PACS: 61.43.Bn; 61.43.Dq
1. Introduction

The exceptionally small decrease in density of bulk

metallic glasses relative to the crystalline state of the

same alloys [1,2], the development of volume effects dur-

ing melting and solidification [2–5] and consideration of

the relationship between molar volume and glass stabil-

ity [6,7] all suggest that efficiently packed atomic config-

urations are common in the structures of these systems.

A recent further development of this concept predicts
0022-3093/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
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that solute atoms with specific radius ratios relative to

the solvent, R*, are capable of producing efficient atomic
packing in the first coordination shell [8]. A clear prefer-

ence for these predicted radius ratios was demonstrated

by analyzing a large number of binary and complex

metallic glasses. In this recent work, atomic clusters

comprised of a central solute atom surrounded in the

first coordination shell by solvent atoms were consid-

ered. All atoms were idealized as hard spheres. A deriva-

tion of the theoretical coordination number, NT,
was obtained by considering the area associated with a

solvent atom of radius, rw, on the curved surface of a

central solute atom of radius, ru. The result was given

as [8]

mailto:daniel.miracle@wpafb.af.mil
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NT ¼ 4p

pð2 � qÞ þ 2q arccosfðsinðp=qÞÞ½1 � 1=ðRþ 1Þ2�1=2g
:

ð1Þ
NT is a real number, where the integer portion represents

the number of solvent atoms in the first shell and the

fractional part represents the gaps between solvent

atoms in the first coordination shell. NT is only a func-

tion of the radius ratio between the solute and solvent

atoms, R = ru/rw, and the maximum surface symmetry,

q (described in [8]). The maximum surface symmetry is

also a function of R, where

q ¼ 3 for 0:225 6 R < 0:414; ð2aÞ

q ¼ 4 for 0:414 6 R < 0:902; ð2bÞ

q ¼ 5 for 0:902 6 R < 1: ð2cÞ

This representation of NT provides a more accurate

description than an earlier equation [9]. Details

regarding the derivation of Eq. (1) are provided else-

where [8].

A simple definition of local atomic packing efficiency,

P, is given as the ratio of the actual coordination
number, N, normalized by the theoretical maximum

coordination number, NT. N may be determined analyt-

ically from Eq. (1) by truncating NT, or may be

determined experimentally from high quality diffraction

data.

The earlier analysis of efficient atomic packing pro-

vides a theoretical treatment of atomic clusters with sol-

vent atoms only in the first coordination shell [8].
Although this idealization is satisfied in many important

systems, including the local environment of metalloid

solutes in metal–metalloid glasses, in many cases the first

coordination shell around a given solute atom has mul-

tiple atomic species. Further, the first coordination shell

around solvent atoms will generally contain both solvent

and solute atom species. The objective of the present pa-

per is to provide an approach for quantifying the local
packing efficiency when multiple atomic species occupy

the first coordination shell. Concepts of efficient packing

have been developed in the past based on bulk observa-

tions such as density, volume changes upon solidifica-

tion and molar volume [1–7]. However, this general

view is not sufficiently specific to establish if efficient

atomic packing is a characteristic feature for all atomic

species in metallic glasses, or if packing is efficient
only around selected atomic species. Thus, the pre-

sent analysis can provide new insights into metallic

glasses, and will enable correlation with characteristics

such as atomic structure, glass formability and deforma-

tion. This concept is applied via an analysis of diffrac-

tion data reported in the literature for several metallic

glasses.
2

2. Packing efficiency of multiple atomic species in the first

coordination shell: the model

Eq. (1) allows the maximum theoretical coordination

number and packing efficiency to be determined from R

and from diffraction data for a binary system. Although
this approach was developed for occupancy of only one

atomic species (i.e., the solvent) in the first coordination

shell, it can be extended to determine the local packing

efficiency when multiple atomic species occupy the first

coordination shell. In this analysis, �interstitial� occu-

pancy of much smaller solutes between much larger

atoms in the 1st coordination shell is not considered.

This is supported by the observation that solutes small
enough to fit in the interstices formed by a nearly planar

configuration of efficiently packed larger atoms do not

occur in practice in metallic glasses, as described in more

detail in Section 4.

Consider a ternary alloy with solute atoms u and v,

and solvent atoms, w. There are three partial coordina-

tion numbers that describe the first coordination shell

about any given atom. For example, about a solute
atom, u, these partial coordination numbers are Nuu,

Nuv, and Nuw. Three partial local packing efficiencies

are obtained, Puu, Puv, and Puw, where

Pu/ ¼ Nu/=NT
u/; ð3Þ

Nu/ is the partial coordination number of /(= u,v, or w)
atoms that are first nearest neighbors with u atoms, and

NT
u/ are the values of NT determined from Eq. (1) using

R = ru/r/ of the specific u�/ pair being considered.

Summing the partial local packing efficiencies for all

species in the first coordination shell allows a determina-

tion of the total local packing efficiency. As an inde-

pendent constraint, this sum of local partial packing

efficiencies should not exceed unity (see Section 4 for
further details).
X

/

ðNu/=NT
u/Þ 6 1: ð4Þ

Thus, closer is the total local packing efficiency to unity,

the higher is the local packing efficiency.

High quality diffraction experiments provide an ap-
proach for measuring partial coordination numbers in

metallic glasses. The most accurate values are obtained

when special care is exercised in the experiments and

analysis, so that partial radial distribution functions

(p�rdfs) are obtained. However, the number of p�rdfs
required to define the local chemical environment

around each of the atoms in the system increases with

alloy complexity – a binary alloy requires three unique
diffraction experiments for all combinations of atomic

pairs, while a ternary alloy requires six. As a result, a full

set of p�rdfs is rarely available for alloys with three or

more elements. The widest set of complete diffraction

data exists for binary metal–metalloid glasses, and data
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are also available for a number of other systems. In the

following section, the analysis described above will be

used to determine the local packing efficiency around

each atom type in selected metallic glass alloys.
3. Packing efficiency of multiple atomic species in the first

coordination shell: analysis

The partial and total local packing efficiencies were

determined from published diffraction data for Fe–B

[10], Ni–B [11,12], Co–P [13], Ni–Nb [14] and for Al–

Y and Al–Y–Ni [15]. The atomic radii used in the pre-

sent analysis were those determined in the respective
publications, with the exception of the Al-based glasses,

where the atomic radii were assumed in that work to be

equal to metallic radii published in handbooks. Assessed

values of atomic radii that have attempted to account

for changes in bond length with alloying [9,16] were used

for the Al-based glasses in the present analysis.

The partial and total local packing efficiencies for

these alloys are shown in Table 1. In general, the total
local packing efficiencies are within an assessed accuracy

of ±10% of unity (see Section 4 for a description of the

origin and magnitude of the assessed accuracy of P),

showing that local packing is typically very efficient in

metallic glasses. Packing is efficient not only around sol-

ute atom centers, but also around solvent atoms. The

exceptions are both P and Co atom centers in Co80P20,

where the packing efficiencies are 87–88%, and Al atom
centers in Al87Y8Ni5, where the total packing efficiency

is less than 70%.

Insufficient diffraction data are available to fully

determine the packing around Ni atoms in Al–Y–Ni.

However, PNi–Al + PNi–Y @ 1, so that PNi–Ni @ 0 and

therefore no Ni–Ni nearest neighbor bonds are expected

to form [17]. This is consistent with the discussion in

[15]. Nevertheless, a small fraction of Ni occupancy in
the first coordination shell cannot be ruled out given

the accuracy of the data obtained from total radial dis-

tribution functions in that work.
4. Discussion

Analysis of the local atomic packing efficiency shows
that a total packing efficiency near unity, within an as-

sessed error of ±10% (see discussion below), is common

in metallic glasses (Table 1). The systems selected for

analysis represent a range of glasses that are topologi-

cally distinct, since the solute-to-solvent atom radius ra-

tios range from 0.6654 to 1.258. Efficient atomic packing

is maintained in binary systems even when the concen-

trations of the elements present are changed, as shown
for Ni–B and Nb–Ni glasses (Table 1). In fact, the

Nb–Ni glasses cover a range of compositions such that
3

the solute species becomes the solvent species, and an

atomic packing efficiency near unity is maintained for

both species in the full range of compositions. In con-

trast to these trends, the addition of Ni to Al–Y glasses

produces important changes in the local packing effi-

ciency around Al atoms.
These high values support the conclusion that local

atomic packing is generally very efficient in metallic

glasses. The diffraction data used in this analysis repre-

sent globally averaged signals, so that efficient local

packing must be considered as a global average state

of the system. The variations in local atomic packing

efficiency around a given atom type are likely to be rel-

atively small throughout the structure, since local pack-
ing efficiencies significantly less than unity around some

atoms will require the improbable result of local packing

efficiencies significantly greater than unity around others

to obtain a global average near unity.

The present results are inconsistent with a random

arrangement of atoms in the first coordination shell.

For a dense random packed array of monosized spheres,

the mean coordination number ranges from about 7.5 to
11 [18,19] so that the total local packing efficiency ranges

from 0.56 to 0.83. Systems containing both larger and

smaller spheres can provide more efficient packing than

a unimodal size distribution [20,21], and specific radius

ratios, R*, have been shown to enable especially effi-

ciently packed configurations [8]. Further, short range

ordering is commonly observed in metallic glasses

[11,22–32]. It is suggested here that the introduction of
solutes of special radius ratios, R*, relative to the solvent

atoms enable efficient atomic packing by replacing ran-

domness with topological ordering. The current quanti-

tative analysis provides additional support to the earlier

observations that efficiently packed local atomic config-

urations associated with short range ordering is a gov-

erning paradigm for the structure of metallic glasses.

For comparison, local packing efficiencies were calcu-
lated for the crystalline phases nearest the compositions

of the metallic glasses in Table 1. Intermetallic com-

pounds nearest the metallic glass compositions were

identified from [33] and the local crystal configurations

and partial coordination numbers were obtained from

[34]. The crystal structure prototype(s) and Pearson

symbol(s) considered for the intermetallic crystalline

compounds closest to the glasses studied here are given
in Table 2. The partial coordination numbers for the

crystalline phases were determined for each of the poly-

hedra listed in [34]. To allow direct comparison between

local packing efficiencies for the amorphous and crystal-

line forms, this analysis included only atoms whose cen-

ters were within a spherical shell defined by the

integration limits used in the determination of the exper-

imental partial coordination numbers (Table 1). Where
limits were not provided, an estimated limit of ±25%

of the sum of the atomic radii was used. The local



Table 1

Local and total packing efficiencies obtained from published diffraction data

Alloy Ru/
a Nu/

b NT
u/ at Ru/ Pu/ Integration limits (pm)

Fe80B20 [10] rB = 85.5 pm

rFe = 128.5 pm

B–B 1 0 13.33 0 –

B–Fe 0.6654 8.64 8.52 1.01 190 6 r 6 255

B total 8.64 1.01

Fe–B 1.503 2.16 21.2 0.102 190 6 r 6 255

Fe–Fe 1 12.4 13.33 0.930 225 6 r 6 345

Fe total 14.56 1.03

Ni81B19 [11] rB = 85 pm

rNi = 126 pm

B–B 1 0 13.33 0 –

B–Ni 0.6746 9.3 8.62 1.08 180 6 r 6 255

B total 9.3 10.8

Ni–B 1.482 2.2 20.85 0.106 180 6 r 6 255

Ni–Ni 1 10.8 13.33 0.810 215 6 r 6 300

Ni total 13.0 0.916

Ni64B36 [12] rB = 86 pm

rNi = 127.5 pm

B–B 1 1.1 13.33 0.083 Not reported

B–Ni 0.6745 8.7 8.61 1.01 Not reported

B total 9.8 1.09

Ni–B 1.483 4.9 20.86 0.235 Not reported

Ni–Ni 1 9.2 13.33 0.690 Not reported

Ni total 14.1 0.925

Co80P20 [13] rP = 104.5 pm

rCo = 127.5 pm

P–P 1 0 13.33 0 –

P–Co 0.8196 8.9 10.24 0.869 180 6 r 6 320

P total 8.9 0.869

Co–P 1.220 2.09 16.56 0.126 180 6 r 6 320

Co–Co 1 10.1 13.33 0.758 180 6 r 6 340

Co total 12.19 0.884

Nb60Ni40 [14] rNi = 125 pm

rNb = 149 pm

Ni–Ni 1 3.8 13.33 0.285 Not reported

Ni–Nb 0.8389 8.2 10.46 0.784 Not reported

Ni total 12.0 1.07

Nb–Ni 1.192 5.5 16.13 0.341 Not reported

Nb–Nb 1 9.0 13.33 0.675 Not reported

Nb total 14.5 1.02

Nb50Ni50 [14] rNi = 125 pm

rNb = 151 pm

Ni–Ni 1 5.0 13.33 0.375 Not reported

Ni–Nb 0.8278 7.4 10.33 0.716 Not reported

Ni total 12.4 1.09

Nb–Ni 1.208 7.4 16.38 0.452 Not reported

Nb–Nb 1 7.5 13.33 0.563 Not reported

Nb total 14.9 1.01

Nb44Ni56 [14] rNi = 124 pm

rNb = 151 pm

Ni–Ni 1 5.5 13.33 0.413 Not reported

92 D.B. Miracle / Journal of Non-Crystalline Solids 342 (2004) 89–96
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Table 1 (continued)

Alloy Ru/
a Nu/

b NT
u/ at Ru/ Pu/ Integration limits (pm)

Ni–Nb 0.8212 6.6 10.26 0.643 Not reported

Ni total 12.1 1.06

Nb–Ni 1.218 8.4 16.53 0.508 Not reported

Nb–Nb 1 6.5 13.33 0.488 Not reported

Nb total 14.9 0.996

Nb37Ni63 [14] rNi = 125 pm

rNb = 153 pm

Ni–Ni 1 6.6 13.33 0.495 Not reported

Ni–Nb 0.817 5.9 10.21 0.578 Not reported

Ni total 12.5 1.07

Nb–Ni 1.224 10.0 16.63 0.602 Not reported

Nb–Nb 1 5.6 13.33 0.420 Not reported

Nb total 15.6 1.02

Al90Y10 [15] rY = 180.15 pm

rAl = 143.174 pm

Y–Y 1 1.1 ± 0.4 13.33 0.09 270 6 r 6 450

Y–Al 1.258 14.1 ± 1.5 17.16 0.828 243 6 r 6 404

Y total 15.2 0.918

Al–Yc 0.7947 1.6 ± 0.2 9.95 0.161 243 6 r 6 404

Al–Alc 1 10.7 ± 0.8 13.33 0.803 215 6 r 6 358

Al total 12.3 0.964

Al87Y8Ni5 [15] rY = 180.15 pm

rNi = 128 pm

rAl = 143 pm

Y–Y 1 0.4 ± 0.4 13.33 0.030 270 6 r 6 450

Y–Ni 1.407 2.7 ± 0.7 19.57 0.138 231 6 r 6 385

Y–Al 1.260 14.3 ± 1.9 17.19 0.832 243 6 r 6 404

Y total 17.4 1.00

Ni–Yc 0.7105 3.5 ± 2.6 9.01 0.389 231 6 r 6 385

Ni–Nic 1 �0 (estimated) 13.33 �0 192 6 r 6 320

Ni–Alc 0.8951 6.5 ± 0.2 11.13 0.584 203 6 r 6 339

Ni total �10.0 0.973

Al–Yc 0.7938 1.2 ± 0.2 9.94 0.121 243 6 r 6 404

Al–Nic 1.117 0.4 ± 0.1 15.01 0.027 203 6 r 6 339

Al–Alc 1 7.2 ± 0.8 13.33 0.540 215 6 r 6 358

Al total 8.8 0.688

a The sources of the metallic radii are discussed in the text.
b The values of Nu/ are taken from the citations indicated in the table.
c Data obtained from total radial distribution functions.
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packing efficiencies were determined for each of the pol-

yhedra in the intermetallic phases as described above in

Eqs. (1)–(4).

The results of this analysis are shown in Table 2. In

some cases, analysis of more than one polyhedron

in one or more intermetallic phases yielded a range in

packing efficiencies. In general, the local packing effi-

ciencies in the crystalline intermetallic compounds are
close to unity. Notable deviations include the packing

efficiency around Y in Al–Y and Al in Al–Y–Ni, which

are significantly below unity, and the packing efficiency

around Ni in Ni–Nb, which is significantly above unity.
5

This comparison supports the earlier concept that

the local structure in metallic glasses is likely to be sim-

ilar to local packing in competing crystalline phases

[23].

Of the three metal–metalloid glasses considered here,

packing is least efficient in the Co–P system, which is

consistent with the poorer glass forming ability of this

alloy relative to Fe–B and Ni–B. The origin of the rela-
tively lower packing efficiencies around Co and P in the

Co–P glass is not known. Of course, packing is still

rather efficient, and is on par with the packing efficiency

in the Co2P structure. Two possible explanations for the



Table 2

Total local packing efficiencies in competing crystalline intermetallic compounds

Glass system Nearest crystalline

compound(s)

Prototype

(Pearson symbol)

Total local packing efficiency around specified atom

type

Fe–B Fe3B Ni3P (tI32) 0.89–0.99 (Fe) 0.94–1.06 (B)

Fe3B CFe3 (oP16)

Ni–B Ni3B CFe3 (oP16) 0.97–1.00 (Ni) 0.93 (B)

Co–P Co2P Co2Si (oP12) 0.90 (Co) 0.98 (P)

Al–Y A13Y AuCu3 (cP4) 1.00 (Al) 0.70 (Y)

A13Y BaPb3 (hR12)

A13Y Ni3Si (hP8)

Al–Y–Ni Al4YNi Al4YNi (oC24) 0.77–1.00 (Al) 0.86 (Y) 0.85 (Ni)

Ni–Nb NbNi3 Cu3Ti (oP8) 0.78–0.84 (Nb) 0.89–1.40 (Ni)

NbNi3 Al3Ti (tI8)

Nb7Ni6 Fe7W6 (hR13)
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low packing efficiency around Al in Al–Y–Ni have pre-

viously been discussed in detail [17]. The coordination

numbers from Al–Y–Ni were obtained from less accu-

rate total radial distribution functions. Further, the

interatomic bond distances were assumed in [15] to be

equal to the sum of metallic radii, even though signifi-

cant bond shortening is known to occur, leading to an

additional possible error in coordination numbers. An
internal check [17] of the data of [15] show an Al defi-

ciency, which further points to the possibility of errors

in reported coordination numbers. Finally, it is added

here that the packing efficiency around Al in crystalline

Al4YNi is as low as 0.77 (Table 2), so that poor packing

efficiency around Al may be an intrinsic feature of this

alloy.

The primary sources of error in the local packing
efficiency result from uncertainty in the atomic radii

and from inaccuracies in the experimentally determined

partial coordination numbers, Nu/. The actual sizes of

atoms in a material depend upon the local chemistry

and structure. With the exception of the Al-based

glasses, the atomic radii used here were determined in

the material of interest, so that corrections for the

influence of local chemistry and structure are included
in this analysis. Atomic radii in the Al-based glasses

were taken from assessments that have attempted to

make some account of these effects [9,16]. In a more

general sense, some degree of covalent bonding and

an associated bond shortening is often present in metal-

lic glasses. While this may produce an uncertainty in

the absolute values of the constituent atomic radii,

the radius ratios are less strongly affected, since short-
ening of both the solute and solvent atoms may occur.

In the end, the present analysis was found to be rela-

tively insensitive to the actual values used for atomic

radii as long as the values are obtained in a consistent
6

manner. As a result, the conclusions above are not

substantially different when elemental metallic radii

obtained from handbooks are used in the present

analysis.

An inherent error exists in the experimental determi-

nation of Nu/. Sources of this error include low infor-

mation content in a highly averaged signal, which

require deconvolution from adjacent signals. The infor-
mation content can be improved by conducting care-

fully controlled experiments which produce partial

radial distribution functions rather than total radial

distribution functions. The data used for the analysis

here were obtained as much as two decades ago. Stud-

ies using brighter light sources and more modern spec-

trometers should be able to provide improved signals

and higher precision. An assessment of the errors asso-
ciated with diffraction analysis at the time that these

data were collected provides a probable error of

±10% in Nu/ [14], so that a similar error is expected

in the present work for Pu/.

Eq. (1) provides the non-intuitive result that a theo-

retical coordination number of 13.33 is produced for a

value of R = 1. The intuitive conclusion that a coordi-

nation number of 12 is the maximum possible for a
cluster of equal-sized spheres seems to follow from

the practical observation that a coordination number

greater than 12 cannot be achieved in reality for hard

spheres. Nevertheless, it can be shown qualitatively that

two well-known clusters with a coordination number of

12 – the icosahedron and the 1st coordination shell of

an fcc array – each possess extra space in the 1st shell.

In the former case, an ideal, unstrained icosahedron is
produced when the central (solute) sphere has a radius

ratio of R = 0.902 relative to the (solvent) spheres in

the 1st shell. Each sphere in the 1st shell contacts five

others in the 1st shell, so that the surface symmetry,
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q, is the maximum possible value for packing on a

curved surface. This is the analog on a curved surface

of efficient hexagonal packing of equal-sized spheres

on a flat surface, so that a net of equilateral triangles

is produced that perfectly tiles the surface of the central

solute sphere of this icosahedron. A strain is produced
in the first coordination shell as R is increased to unity,

so that the equilateral triangles that tile the surface of

the icosahedron expand uniformly and nearest neigh-

bor spheres in the 1st shell no longer contact one an-

other. The extra space thus produced is distributed

uniformly between spheres in the first coordination

shell. However, this strain is modest, and no single va-

cant site is produced within which a full extra sphere
can be placed. Further, relaxation to reestablish con-

tact of spheres in the 1st shell will not produce suffi-

cient space in a single location for an additional

sphere due to geometric constraints (see Fig. 4 in

[35]). Rigorous contact is provided between equal-sized

spheres in the 1st shell of in an fcc array. However,

each sphere in this shell contacts only four other

spheres in the 1st shell, so that packing is intrinsically
less efficient. This is the analog on a curved surface

of square packing of equal-sized spheres on a flat sur-

face. The extra space produced by this less efficient

packing is distributed in the interstices between the

square arrays of spheres in the 1st shell, so that an

additional solvent sphere cannot be placed on the sur-

face. Since the spheres in the 1st shell are in physical

contact with each other, a relaxation of this configura-
tion cannot be accomplished. Thus, the practical result

that a coordination number greater than 12 cannot be

produced for a cluster of equal-sized spheres results

from geometrical constraints of packing on a curved

surface, and not from the unavailability of space for ex-

tra spheres. Eq. (1) quantifies the extra space that is

distributed across the surface of these two clusters with

the result that NT = 13.33 for a value of R = 1.
The present analysis is developed broadly for metallic

glasses, where R is observed to range from �0.6 to �1.4.

Thus, it is not expected that smaller solutes will occupy

the interstices between solvent atoms on the curved sur-

face of the 1st coordination shell. Atoms in the 1st shell

typically exist in an efficiently packed triangular array,

or in the somewhat less efficiently packed square or rec-

tangular arrays as described above. To fit within the
interstices formed by these nearly planar configurations,

a solute would require a radius less than 0.155 that of

the larger atoms to fit in an equilateral triangular array,

and less than 0.414 for a square array of larger atoms.

Since atoms of such small relative size do not occur in

metallic glasses, this interstitial occupancy is not ex-

pected to occur. However, such small solutes do exist

in oxide glasses, so the analysis developed here for local
packing efficiency may not be generally applicable to

oxide glasses.
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5. Summary

The main contribution of this work is to present a

quantifiable analysis for the local packing efficiency in

the structures of metallic glasses when more than one

atomic species is present in the first coordination shell.
This analysis has been applied to several metallic glasses

using published diffraction data for atomic radii and

partial coordination numbers. Application of this anal-

ysis has shown that local packing is quantitatively with-

in experimental error of the maximum possible packing

efficiency. This result is obtained for a number of topo-

logically distinct glasses, including systems where the

solutes are smaller than the solvent (Fe–B, Ni–B, Co–
P and Nb–Ni) and systems where solutes are larger than

the solvent (Ni–Nb, Al–Y and Al–Y–Ni). Packing is

generally efficient not only around solute atoms, but

also around solvent atoms. Finally, local packing effi-

ciency is unaffected by significant changes in composi-

tion, as shown in the Ni–B and Nb–Ni systems.

Efficient local packing is concluded to be a global state

of the system, since the data upon which the analysis
is based are global averages, and significantly lower

packing efficiency around some atoms would require

the physically improbable result that the packing effi-

ciency is higher than unity around others to maintain

the observed global average near unity. The local pack-

ing efficiencies are essentially equal to the local packing

efficiencies in the competing crystalline phases. The

analysis developed here is consistent with frequent ear-
lier reports of short range ordering in metallic glasses.

Local packing around Co and P atoms in Co–P, and

around Al atoms in Al–Y–Ni are significantly less than

the theoretical maximum. These exceptions have been

discussed with respect to relative glass forming ability,

errors in the available diffraction data and the local

packing efficiency of competing crystalline structures.
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